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ABSTRACT
Because of the diversity of document layouts and reading
styles, detecting reading activities in real life is a challenging
task compared to the detection in the laboratory setting. For
contributing to the implementation of robust reading detec-
tion algorithms, we introduce a dataset which contains 220
hours of sensor signals from JINS MEME electrooculography
glasses and corresponding ground truth activity labels. As a
baseline study, we propose a statistical feature based reading
detection approach and evaluate it on the dataset.
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1 INTRODUCTION
Just as our bodies consist of what we eat, our minds are
shaped by the information we obtain. In particular, writ-
ten text is one of the most important information sources
in our lives. Therefore, understanding and improving daily
reading habits provides several cognitive benefits, including
increased vocabulary and logical thinking [4].

For instance, as people are encouraged to be physically fit
by monitoring step counts, tracking the number of words
they read in a day has potential to motivate them to read
more. The idea of estimating the number of read words has
been implemented asWordometer by using mobile eye track-
ing glasses [11], electrooculography glasses [6], and a remote
eye tracker [1]. However, these implementations were eval-
uated only in the laboratory setting. A finding from our
previous in-the-wild study is that readings in real life oc-
cur in a variety of situations, and an estimator trained by
well-mannered reading data could not cover such natural
readings enough [5].
On the basis of several requests relating to the data, we

conduct a large-scale recording again solving some issues
that appeared in the previous work. We utilize JINS MEME
(see Figure 1) as a sensing device. It is equipped with a three-
electrode electrooculography (EOG) sensor which measures
eye movements and a six-axis internal measurement unit
(IMU) which measures head and body movements. A form
factor and a long-life battery of the device are designed for in-
the-wild studies. A wide variety of approaches have been pro-
posed on it, including recognizing human activities [7], facial
actions [13, 14], gaze gestures [15], and internal states [18].
The contributions of our work are two-fold: the EOG

dataset and our reading detection method. The dataset, soft-
ware for the data recording, and sample codes are available
on our project repository1. This study was conducted with
the permission of the Research Ethics Committee of the Grad-
uate School of Engineering, Osaka Prefecture University.

1https://github.com/shoya140/ubicomp2019-eog-dataset/
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(a) Device overview (b) Sensor signals

Figure 1: JINSMEMEElectrooculographyGlasses and sensor
signals visualized on our Android application

2 BACKGROUND AND RELATEDWORK
As summarized in the survey by Lara and Labrador, many
physical activities (e.g., walking, running, cycling, sleeping)
can be recognized by motion sensors on the body or a smart-
phone [12]. On the other hand, the recognition of reading
activity is considerably restricted because dynamic body
movements could not be observed while reading.

One of the interesting approaches this problem is to mea-
sure eye movements. Steil and Bulling detected daily ac-
tivities including readings by using mobile eye tracking
glasses [17]. Srivastava et al. recognized activities on a com-
puter with several involving reading [16] and Kelton et al.
classified reading/skimming [9] by using a remote eye tracker
attached to a display. These sensors are good at measuring
gaze events (e.g., fixations and saccades). But we assume
that characteristic eye movements (e.g., frequent horizon-
tal/vertical saccades) have enough potential for the detection.
EOG measures such eye movements from the corneo-

retinal standing potential that exists between the front and
the back of an eyeball. Traditional setups use four electrodes
around an eye [2, 3]. Recent sensing devices have three elec-
trodes on each nose pad and the forehead to identify verti-
cal/horizontal eye movements and blinks [8, 10].

3 DATA RECORDING
We utilized JINS MEME ES_R2 and Android Nexus 5X for the
data recording. We developed an application3 which enables
a user to easily check sensor signals and start/stop record-
ing data. Figure 1 shows a screen capture visualizing three
blinks and some vertical and horizontal eye movements. The

2https://jins-meme.com/en/researchers/
3https://memelogger.shoya.io/

(a) English (b) Japanese horizontal (c) Japanese vertical

(d) Not reading

Figure 2: Examples of pictures taken byNarrative Clipwhile
reading or not reading in the wild

sampling frequency was set to 100Hz. Note that we modi-
fied kernel codes and built a customized Android operating
system for a stable Bluetooth Low Energy connection4.

To support a ground truth labeling task, we provided Nar-
rative Clip5, a small life-logging camera which can be at-
tached to clothes and takes a picture every 30 seconds. Ex-
amples of the pictures are shown in Figure 2. At the end of
each day, every activity in the pictures was annotated by the
user into four categories: reading in English (EN), reading
in Japanese written horizontally (JH), reading in Japanese
written vertically (JV), and not reading (NR). The reason we
prepared such three labels for reading is that eye movements
should be affected by the language (native or non-native)
and writing style (vertical or horizontal). Even if characters
appeared in a picture, an activity which does not require
frequent line breaks was not categorized as reading in this
study (e.g., looking at a signboard while walking, reading
a comic, writing codes). In order to protect privacies, we
collected only activity labels and no pictures.
We recruited ten Japanese college students for two days

of data recording. To ensure collecting a minimum amount
of valid reading behaviors, we asked them to try to perform
each activity (EN, JH, and JV) for at least one hour every
day. We held an initial briefing to explain the procedures
and the usage of the devices. In addition, all instructions
were written in a document and shared with participants.
Participants who completed the tasks received 10,000 JPY.

Table 1 shows an overview of the recording durations. In
total, our dataset contains 23 hours of English reading, 25
hours of Japanese horizontal reading, 25 hours of Japanese
vertical reading, and 146 hours of other activities.
4https://shoya.io/posts/meme-android-connection/
5http://getnarrative.com/
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Table 1: Recording durations [minutes]

(a) Day 1

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

EN 54 73 74 67 63 82 91 62 59 49
JH 97 70 101 72 73 86 127 63 75 90
JV 74 101 71 60 83 73 65 66 113 65
NR 474 447 490 499 476 379 204 538 476 494

(b) Day 2

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

EN 100 96 61 61 74 115 67 55 58 62
JH 71 74 117 53 64 60 53 58 58 68
JV 89 75 67 60 116 72 74 73 60 75
NR 466 499 429 567 283 409 358 496 307 509

4 READING DETECTION: BASELINE STUDY
We propose a detection method as a baseline. Characteristics
of the dataset found from an evaluation are also described.

Approach
Ten features are calculated from one sample (30 seconds win-
dow of a data stream): means and variances of the two EOG
axes, variances of three accelerometer axes, and variances
of three gyroscope axes. Then we utilize a Support Vector
Machine to classify the samples. The radial basis function
kernel with hyper parameters C = 1 and дamma = 0.125
were selected experimentally and used for the classifier.

Experimental Conditions
We evaluated the proposed reading detection approach with
a user-independent and a user-dependent training. For a
user-independent training, we separated data into training
and testing in a a leave-one-participant-out cross-validation
manner. Data of nine participants were used for training a
classifier and data of the remaining one participant were
used for testing. For a user-dependent training, the classifier
was adapted to each participant by his/her data with leave-
one-day-out cross-validation. One-day was used for training,
and another day was used for testing. Since the dataset is
unbalanced and our purpose is to detect a minor class, we
applied under-sampling for the evaluation.

Results and Discussion
The classification results are shown in Table 2. Chance rates
are 50%, 33%, and 25% for two, three, and four-class classi-
fications, respectively. One of the interesting findings from
the results is that head and eye movements while reading JV

Table 2: Classification accuracies [%]

Condition User-independent User-dependent

EN vs JH vs JV vs NR 32 34
(EN + JH) vs JV vs NR 46 45
(EN + JH + JV) vs NR 68 69
EN vs NR 67 66
JR vs NR 68 68
JV vs NR 74 69
EN vs JH vs JV 36 46
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Figure 3: EOG signals while reading an English document

texts are relatively distinctive compared to EN and JH. This
may be because the Japanese vertical writing style is often
used for well-formatted texts such as novels and newspapers.
Reading EN and JH texts can be often performed with other
activities, for example, writing and browsing.

As shown in Figure 3, eye blinks (quick up and down eye
movements measured in EOG_V) and forward and backward
saccades to the reading direction have successfully appeared
during a static condition. But dynamic movements of the
head or the glasses cause artifacts, which should be removed
before calculating features.

Figure 4 represents 11-point interpolated recall-precision
graphs for each activity detection task for each participant.
Although there is not much difference between classification
accuracies of a user-independent and a user-dependant train-
ing, the performances are highly distributed by participants.

5 CONCLUSION
This paper presented a dataset which contains sensor signals
of JINS MEME electrooculography glasses and correspond-
ing ground truth activity labels. We demonstrated how chal-
lenging the natural reading detection is by evaluating our
statistical feature based approach.
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(c) Japanese vertical (JV)

Figure 4: Recall-precision curves and average precisions of reading detection with user-independent training
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