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Abstract
Reading in real life occurs in a variety of settings. One may
read while commuting to work, waiting in a queue or ly-
ing on the sofa relaxing. However, most of current activ-
ity recognition work focuses on reading in fully controlled
experiments. This paper proposes reading detection algo-
rithms that consider such natural readings. The key idea is
to record a large amount of data including natural reading
habits in real life (more than 980 hours from 7 participants)
with commercial electrooculography (EOG) glasses and
to use them for deep learning. Our proposed approaches
classified controlled reading vs. not reading with 92.2% ac-
curacy on a user-dependent training. However, the classifi-
cation accuracy decreases to 73.8% on natural reading vs.
not reading. The results indicate that there is a strong gap
between controlled reading and natural reading, highlighting
the need for more robust reading detection algorithms.
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Introduction
Reading is an integral part of our daily lives, as texts remain
one of the vital sources of information and knowledge even
in this age of multimedia. The cognitive benefits of reading
(e.g. better vocabulary skills) and the benefits of increased
reading volumes, are well explored in the fields of education
and cognitive science [5, 17]. However, we know still little
about reading habits of people. Building measurement tools
for daily reading can help understand those habits better.
The motivation of this work is to improve people’s cognitive
abilities by developing an application that motivates people
to read more on a daily basis.

Figure 1: The recording setup in
this work. Participants wore
commercial sensors every day for
more than two weeks.

Figure 2: An overview of the
sensor signals exported by J!NS
MEME. The ground truth is
annotated by the participant at the
end of the day with reviewing
images of Narrative Clip.

As one can be motivated to exercise more by wearing a pe-
dometer, quantifying the activity is the first step to changing
one’s habits [15]. Some common physical activities (e.g.,
walking and sleeping) can be recognized and measured
by body-mounted sensors. However, recognizing reading
activity is still a challenging task because the body move-
ments during reading are limited, making it hard to apply
general motion-sensor based approaches. One of the most
promising directions for reading detection is the use of eye
movements. There is extensive research on eye move-
ments during reading in psychology, cognitive science, and
pervasive computing [16, 4].

However, as far as we know, most of the previous work has
involved specific reading behaviours during controlled ex-
periments and has not covered natural reading activities in
a real life setting. Reading in real life occurs in a variety of
settings, involving various devices and document layouts
that would result in irregular eye movements. Our assump-
tion is that there is a substantial difference between con-
trolled reading and natural reading, meaning that the read-
ing detection methods that work in labs may not necessarily
be usable in the wild.

We believe that developing less obtrusive optical eye track-
ers is key to achieving reading quantification in real life
settings. In this regard, using commercially available elec-
trooculography (EOG) glasses seems promising since they
are relatively light, visually familiar (looking like conven-
tional eyewear) and have sufficient battery life for all-day
use. Their cost is also relatively low, making them suitable
for conducting large-scale data recording [1]. In this work,
we record natural reading activities using commercial EOG
glasses (see Figure 1) and evaluate the accuracy of the
detection algorithm in the wild.

All of the work described in this paper was done with the
permission of the research ethics committee of the gradu-
ate school of engineering, Osaka Prefecture University.

Approaches
We propose three types of reading detection approaches in
this research. The first is a manual feature extraction based
approach. In this approach, we analyze the data obtained
from the devices to find characteristic sensor patterns dur-
ing reading, and select the features for manual classifica-
tion. The second and third approaches are automatic fea-
ture extraction based. We designed a convolutional neu-
ral network (CNN) and recurrent neural network with Long
short-term memory (LSTM) for classifying the raw data.
They extract best features by training with large-scale data.
This section describes the sensing device and details of the
three reading detection methods.

J!NS MEME
We utilize J!NS MEME1 for the sensing. The device is equipped
with three electrodes for eye movement detection and a 6-
axis internal measurement unit (IMU) for head movement
detection. It is developed by JIN CO., LTD. The company

1https://jins-meme.com/en/



Figure 3: The CNN architecture for the reading detection

has released two models of the device: the developer’s
version and the academic version. We used the former for
this research, as it’s widely available to consumers. J!NS
MEME calculates basic eye movements (blink speed, blink
strength, two-step strength of up/down/left/right eye move-
ments) internally on the device itself as shown in Figure 2,
and stream them with IMU data to a smartphone via Blue-
tooth Low Energy. The sampling rate is 20 Hz. Battery run
time is 18 hours, which is sufficient for gathering data all
day during the day. Data are recorded on the iOS applica-
tion, MEMELogger2 and sent to a hosted server every day.

Table 1: Features for the SVM
based reading detection approach

1 freq. of eye blinks mean
2 STD
3 freq. of eye move up mean
4 STD
5 freq. of eye move down mean
6 STD
7 freq. of eye move left mean
8 STD
9 freq. of eye move right mean
10 STD
11 raw signal of acc. x mean
12 STD
13 raw signal of acc. y mean
14 STD
15 raw signal of acc. z mean
16 STD

Approach 1: SVM Based Reading Detection
We employ 16 statistical features from the sensor signals of
J!NS MEME (10 features from eye movements and 6 from
head movements) as shown in Table 1. The frequencies of
eye blinks and eye movements are calculated as inverse
values of the duration between two blinks or eye move-
ments. Acceleration x, y and z are raw signals. We created
samples with the window size of 60 seconds. After the data
were normalized and whitened, we calculated the mean
and standard deviation for each of the sensor values in the
window. Support Vector Machine (SVM) with RBF kernel is
used for learning and classification in this approach. After
the classification, we applied majority voting for 5 minutes’
worth of data to smooth out the results.

2https://itunes.apple.com/en/app/memelogger/id1073074817

Figure 4: The LSTM architecture for the reading detection

Approach 2: CNN Based Reading Detection
An overview of the CNN architecture is shown in Figure 3.
The network receives raw sensor values from J!NS MEME
as inputs, and classifies the gaze activity as either reading
or not reading. For the input layer, 6 maps with a size of
400⇥1 were created from 400 frames of 6 sensors’ values,
including blink speed, vertical eye movement, horizontal eye
movement, acceleration x, y, and z. To increase the number
of training samples, we employed different input window
size (20 seconds) compared to SVM. There is no overlap
between windows. The network has two convolution layers,
each followed by a pooling layer. For the first convolution
layer, the approach utilize a filter with size 12⇥1 with step 2
that exports 8 maps. Since the convolution is done without
zero-padding, the window goes from 400 to 195. Then the
approach utilize an max pooling with a stride of 3 to the 8
maps, thus maps with size 65⇥1 are exported. The same
process with filtering size 11⇥1 and max pooling stride 2
are applied for the second convolution and pooling. Finally,
10 maps with size 14⇥1 are fully linked to 100 units, and
fully linked to the output channel with 2 units: reading or
not reading. Activation functions are rectified linear units
(ReLU). We employ dropout with dropping rate 0.5 in each
pooling and full connecting.



Approach 3: LSTM Based Reading Detection
By utilizing the advantage of the characteristics of time se-
ries data, we have also designed the network architecture
including LSTM [9]. The input shape and parameters of the
architectures are described in Figure 4. The parameters
of the network were selected by random search. Since our
purpose is to quantify reading activities and give feedback
to a user later in the same way with physical activity tracker,
a realtime analysis is not necessarily required. Therefore
Bidirectional LSTM is utilized to precede high accuracies.

After the both of classifications, we apply majority voting
for 5 minutes of data (as we did in the SVM approach) to
smooth the results.

Figure 5: Eye gazes during a
minute of (a) controlled reading
and (b) natural reading. The data
were collected by Tobii eyeX and
classified into fixations (circles) and
saccades (lines).

Data Recording
We asked 7 participants to record their habits using the
following commercial sensors: J!NS MEME, Fitbit Charge
HR, Narrative Clip and Tobii eyeX (see Figure 1). Note that
Fitbit Charge HR and Tobii eyeX are not used in this experi-
ment. All of the participants were college students studying
computer science, who worked on computers most of time.
They used the tracking/recoding devices during the day and
charged them while they slept for more than two consec-
utive weeks. The dataset contains 22 hours of controlled
reading, 427 hours of natural reading, 156 hours of social
interactions and 375 hours of other activities.

Natural Reading Activity
We did not place any limit on the participants’ activities.
Therefore various types of reading activity are included in
the dataset. Participants, for example, read texts on com-
puters, smartphones, e-book readers, as well as paper.
Browsing web pages and typing on a computer were also
labeled as natural reading.

Controlled Reading Activity
To record enough labeled reading activities, we also con-
ducted a controlled experiment. We prepared 60 docu-
ments and asked the participants to read them from begin-
ning to end. They read 15 English documents on paper, 15
English documents on a screen, 15 Japanese documents
on paper, and 15 Japanese documents on a screen. Read-
ing on paper was recorded with J!NS MEME, and read-
ing on a screen was recorded with J!NS MEME and Tobii
eyeX. We did not prohibit them from reading back during
the recording, but most of them read documents continu-
ously without vertical movements. Figure 5 represents the
example of the difference of eye movements while natural
reading and controlled reading.

Narrative Clip for Ground Truth Annotation
For the purpose of collecting ground truth, the participants
added annotations to all data. They were asked to apply
one of the three labels (“reading”, “talking”, and “other activ-
ities”) to every 1 minute of data from 0:00 to 23:59. To help
with the labeling tasks, we provided each participant with a
Narrative Clip 3, a small life-logging camera which can be
clipped to one’s clothing. Narrative Clip takes a picture ev-
ery 30 seconds. Participants reviewed the pictures at the
end of each day and manually labelled their activities. In or-
der to reduce ambiguities of the labels among participants,
we asked them to label activities if pertinent objects (e.g.
book, display, person) appeared in more than two consecu-
tive pictures (= one minute). They submitted the annotated
pictures after removing some of them for privacy reasons.
The reason we asked them to label their activities at the
end of each day instead of during the recording is to make
the dataset “wild” as much as possible. Regularly asking
participants to provide ground truth labels leads to a well
annotated dataset but might change their regular behaviors.

3http://getnarrative.com/



Evaluation
We evaluated the reading detection approaches on our
long-term dataset with user-independent and user-dependent
learning. This section presents procedures of the evaluation
and classification results.

Experimental Condition
For user-independent learning, training and testing data
were separated by leave-one-subject-out cross validation.
Samples of one participant were utilized as testing data,
and samples of others were utilized as training data.

For user-dependent learning, training and testing data con-
sist of samples from one participant. During our experi-
ment, a new CSV file was created every time when a par-
ticipant started recording. We shuffled the order of files and
divided them to two groups equally. Samples in one groups
were utilized as training data and the other were utilized
as testing. The reason we employed this way is to prevent
carelessly mixing training and testing samples. Applying
cross validation with all samples is the easiest way. But
it might lead to incorporation of very similar samples into
training and test folds in the analysis of time series data [8].

The mean and standard deviation value of results were cal-
culated over all 7 participants. Because the number of sam-
ples in each class is unbalanced, “class weight” functions
implemented in machine learning frameworks (scikit-learn
for SVM based and Keras with TensorFlow for CNN and
LSTM based) were utilized during training the model.

Results
Table 2 shows results comparing the SVM, CNN, and LSTM
based approaches. The SVM based approach is more ac-
curate than other two approaches to detect controlled read-
ing. Although the differences are small, deep learning ap-
proaches performed better to detect natural reading.

controlled reading natural reading

user-indep. user-dep. user-indep. user-dep.

SVM 80.7±8.0% 92.2±7.2% 68.5±7.2% 73.1±5.3%

CNN 66.2±20.6% 80.2±12.3% 69.6±7.1% 70.0±5.4%

LSTM 74.3±17.5% 90.4±5.8% 67.1±10.1% 73.8±6.0%

Table 2: Means and standard deviations of classification
accuracies over 7 participants (controlled/natural reading vs. not
reading)
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Figure 6: Confusion matrices of natural reading vs. not reading
on the user-independent approaches.

Confusion matrices of the natural reading vs. not reading
classification on the user-independent approach are shown
in Figure 6. For most of the participants, except for Partic-
ipant c, the results show high precision (true positives di-
vided by true positives + false positives) and low recall (true
positives divided by true positives + false negatives). This
result indicates that there are some reading activities that
are still difficult to be detected by the three approaches.



Discussion
By reviewing the pictures taken by Narrative Clip, we iden-
tified some cases in which an activity can be misclassified.
For example, while all the participants labeled Web brows-
ing (See Figure 7-a) as “reading”, this activity was some-
times misclassified by the CNN and LSTM as not reading.
This may have been caused by the combination of multiple
factors, such as the web page layout that combines struc-
tured and non-structured texts (e.g., short text passages,
banners, ads, etc.) as well as the actions that accompany
web browsing, such as clicking on the embedded URIs.
An interesting case of false positive occurred when one of
the participants was watching a video (See Figure 7-b).
The participant himself labeled this activity as “not reading”,
but our CNN and LSTM based user-independent approach
classified it as reading. The participant was watching the
video on www.nicovideo.jp, a popular video sharing service
in Japan, which famously shows many floating subtitles in
the videos. This has likely provided some irritations for the
classifier.

A major problem we found through this experiment is in la-
beling ground truth accurately for natural reading. Because
the act of reading differs in kind (e.g. reading a paper book,
browsing web pages, skimming texts, etc.), classifying ac-
tivities into the simple two classes (reading vs. not reading)
can sometimes be difficult even for humans.

Figure 7: (a) False negative: a
user is browsing web pages. (b)
false positive: a user is watching a
video.

Related Work
Eye Movements and Activity Recognition
Bulling et al. are the first to explore tracking eye movements
in natural settings using Electrooculography glasses. They
looked into reading (also including reading on the move), as
well as other everyday activities and cognitive processes [3,
2]. As a pioneering study, their initial datasets were more
controlled than natural, and the study employed relatively

obtrusive experimental setups. For example, the partic-
ipants wore a prototype EOG system (taped around the
eyes) or optical eye trackers.

Another study that uses eye movements for analysing read-
ing is done by Kunze et al. [13, 12]. They present some
methods for counting the number of words read by the user
using mobile eye trackers and EOG systems [14, 10]. For
reading detection, however, they rely on artificial reading
tasks, and the study is limited to lab experiments.

A study by Ishimaru et al. works at distinguishing several
activities on a Google Glass head-mounted computer us-
ing only head motion and blink frequency [11]. The target
activities include reading, talking, watching videos, etc. The
reading tasks in this research are also controlled and do not
include natural reading in a daily life setting.

Activity Recognition in the Wild
While increasing reading volume seems to provide substan-
tial cognitive benefits (such as improved vocabulary and
critical thinking skills), it is still difficult to determine what
constitutes a healthy reading habit [5]. One major reason
for that is the lack of tools to quantify reading in a real life
setting for a long term.

There are still few long-term datasets in the real environ-
ment on reading and other cognitive activities. One ma-
jor reason is the lack of unobtrusive technology to make
long-term tracking possible. There are some datasets con-
tributed by computer vision researchers working on egocen-
tric vision, which are mostly camera recordings, but some
also include eye gaze data [7, 6]. Most notably, Steil and
Bulling [18] contributed a long-term eye tracking and ego-
centric vision dataset with over 80 hours of recording in a
natural uncontrolled environment.



Position of This Study
The experimental setups used in previous research often
involved bulky prototype setups that interfered with the nat-
ural flow of the activities, making the users (and bystanders)
aware of the fact that they are recorded. Of course, efforts
for miniaturization in recent years have produced mobile
eye trackers that are far less obtrusive (e.g. Tobii and SMI
eye tracking glasses), far less expensive and more open
for research (most notably the Pupil Labs eye tracker) com-
pared to the earlier setups. Most of these devices are, how-
ever, still quite noticeable, and may not be well suited for
wearing in public. The goal of our research is to explore
ways to quantify natural reading habits for a long term,
using affordable technologies that are less obtrusive and
more socially acceptable for daily usage. In this paper, we
presented our initial effort towards this goal, providing a
dataset recorded with commercially available, truly “wear-
able” devices that can still give some insights into one’s
natural reading activities.

Conclusion and Future Work
In this work, we recorded natural activities in a daily life set-
ting with unobtrusive, commercially available devices. By
sacrificing accuracy to a degree, the amount of the dataset
reached to more than 980 hours. The recorded data re-
vealed that “natural reading” is a complex activity that in-
cludes many factors, as reading plain texts and browsing
websites for instance involve different kinds of eye move-
ments. We proposed three approaches to reading detection
and found that the deep learning based approaches are su-
perior to the SVM-based approach to detect natural reading
activity. By investigating error samples, we have uncovered
some of the challenges in detecting natural reading, includ-
ing how to collect large-scale data with ground truth.

Next we want to explore the large volume of data we gath-
ered but did not use for the purpose of the present study in
future work. Such data include recordings of the eye gaze
while reading on a screen with Tobii eyeX and the heart
rates while reading with Fitbit Charge HR. It should be inter-
esting to see the relationship between J!NS MEME’s data
and the data obtained by other sensors, and estimate the
user’s cognitive state such as the level of attention, concen-
tration, and understanding of the contents.
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