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ABSTRACT
Learning is one of the vital behaviors of human beings. This
paper demonstrates a framework to augment learning activities
by packaging two key ideas: Eyetifact and HyperMind. Eyeti-
fact is a system that converts data of eye movements beyond
the difference of sensing devices to collect a large amount of
training data for machine learning. HyperMind is a digital
textbook that displays learning materials dynamically based
on a learner’s cognitive states as measured by several sensors.
In order to implement these two ideas, we have conducted
experiments related to eyewear computing, textbook reading
behavior analysis, and stress sensing. The contributions of this
research are to investigate approaches that recognize human
abilities and to transfer them from experts to others.
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INTRODUCTION AND SPECIFIC PROBLEMS
Learning – the act of acquiring new knowledge, skills, abil-
ities, and expertise – is one of the vital behaviors of human
beings. In particular, people in the modern world are always
required to learn situational new skills. The reason is that
advances in technology are constantly changing their lifestyles
and the ways they work. However, the computer is not only a
requester of new skills; it can also be a partner in enhancing
learning [Dengel 2016]. For instance, a system which senses
learners’ behaviors can help learners by providing personal-
ized information based on their interests and problems. If
learners’ expertise can be recognized, it will be possible to
transfer the secret of success from experts to novices. We focus
on such a research domain and define it as Ability Recognition.
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Ability consists of physical movements, cognitive states, and
contexts of the activities. Since Douglas Carl Engelbart pro-
posed the framework of Augmenting Human Intellect [En-
gelbart 1962] and Mark Weiser created the terms Ubiquitous
Computing [Weiser 1993] and Calm Technologies [Weiser and
Brown 1997], many researchers have investigated recognition
of human activities by using several sensors for giving proac-
tive assistance. Compared to other two factors, recognizing
cognitive states (e.g., attention, concentration, comprehension)
is still a challenging task because it is hard to detect them by
simple motion sensing approaches. Advanced sensors are re-
quired. For example, eye tracking is one of the most effective
sensing approaches. But most of eye tracking devices are not
designed for wearing regularly (e.g., the devices are expensive;
battery lives are not enough to cover a whole day; cables on
devices prevent a user from moving naturally). Therefore, the
more the sensing approach is advanced, the more the environ-
ment of data recording is limited. To utilize modern machine
learning techniques including deep learning, we need to come
up with the idea how to record a huge amount of training data
on such valuable sensors.

The specific problems addressed in this work are three-fold.
(1) How can we record a large amount of natural behaviors in
real environments? (2) How can we recognize problems and
interests of learners by sensors? (3) How can we recognize
and transfer the secret of success from experts to novices?

RELATED WORK
There is a large corpus of work focusing on understanding hu-
man behaviors from activity to context towards ability recog-
nition. This section summarize them with highlights of two
aspects: the target of recognition and the sensing modality.

Activity Recognition
The starting point of this field was to recognize “what” a user
is doing. Human activities can be classified into two rough
categories: physical activities (e.g. walking, running, cycling,
sleeping) and cognitive activities (e.g. reading, writing, talk-
ing). Most physical activities can be recognized by motion
sensors on the body [Foerster et al. 1999, Bao and Intille
2004] or a smartphone [Dernbach et al. 2012]. Recognizing
cognitive activities is a more challenging task because body
movements during these activities are limited. Additional
sensors are required to recognize they are taking place.
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Figure 1. Examples of sensors in this research field sorted by their pervasiveness (left: advanced but expensive; right: inexpensive)

One of the interesting approaches is to use eye movements.
The relationship between cognitive activities and eye move-
ments is well explored in cognitive science and psychol-
ogy [Rayner 1998]. Bulling et al. have classified tasks includ-
ing cognitive activities by using electrooculography (EOG)
sensors [Bulling et al. 2011]. The trend of eye tracking re-
search in activity recognition is going towards recognitions in
a natural uncontrolled environment. A long-term eye tracking
and egocentric vision dataset using Pupil (shown in Figure 1)
has been proposed [Steil and Bulling 2015].

Context Recognition
The more sensors developed, the more interested researchers
became in recognizing the context of human activities (i.e.,
“when”, “where”, “by whom”, and “why” the activity is per-
formed). For example, first-person vision is utilized in the
context recognition. Through an egocentric camera attached
to the head or the body, activities and the contexts can be esti-
mated from objects in front of the person [Ma et al. 2016]. To
recognize social interactions is also a key factor to understand
the context of talking activities [Fathi et al. 2012]. Instead of
the on-body sensors mentioned above, remote sensors (e.g.,
fixed cameras [Dimakis et al. 2008], microphones [Stager
et al. 2004]) have also been employed to recognize contexts
because they can record the interactions between humans and
the environment.

Ability Recognition
The most abstract subject of recognition is “how” the activity is
performed (e.g., comparing performances between participants
in the same task). Since it is close to the cognitive processes,
an obvious approach to tracking it is to monitor brain activ-
ities directly. Electroencephalography (EEG) [Gevins et al.
1998], magnetic resonance imaging (MRI) [Cox and Savoy
2003], and near-infrared spectroscopy (NIRS) [Ishimaru et al.
2014a] can be candidate, if we can accept the limitation of the
recording environment. Physiological sensing including mea-
suring the autonomic nervous system (ANS) [Sapolsky 1994]
is more realistic. Cognitive states (e.g., concentrations, men-
tal workload, boredom) can be measured by the changing of
pupil diameter [Kahneman and Beatty 1966] and nose temper-
ature [Kunze et al. 2015]. Eye tracking is on the balance of the
pervasiveness and the potential. In the field of sensing reading
actiivties, for instance, unknown words for a reader [Okoso
et al. 2015] and his/her English level [Yoshimura et al. 2015]
can be predicted from eye movements. Recently eyewear com-
puters became more and more affordable [Amft et al. 2015,
Kuhn et al. 2016].

METHODOLOGICAL APPROACHES AND THE KEY IDEAS
In order to solve three problems mentioned in the Introduction,
we propose methods and tools for ability recognition, and
package them as a framework. The framework mainly consists
two ideas: Eyetifact and HyperMind. Eyetifact is related to
the first problem and HyperMind is for the others.

Eyeticact
AI technologies including deep learning have rapidly acceler-
ated research in the field of image, audio and natural language
processing. However, ability recognition is not sufficiently
based on the benefits technology offers. Our hypothesis of the
reason is that collecting a large amount of data for training is
more difficult than it is in other research fields.

To solve this problem, we propose the system that converts
data beyond the difference of sensors. Figure 2 represents an
overview of this idea. It converts eye movements recorded
by a perversive sensor into artificial eye movements which
are equivalent to the data recorded by an advanced sensor by
learning the relation of data from two devices. By utilizing this
system, researchers can record a lot of natural eye movements
with commercial eyewear computers in real life, convert them
to valuable data, and apply deep learning techniques.

HyperMind
Regarding the second and the third problem, it is difficult to
cover many scenarios in the limited time frame of the doctoral
project. Thus we treat a single case in the thesis.

Still today, various school subjects are aligned with contents
that are captured in textbooks. Although curiosity is an impor-
tant factor for learning, every student has a different way of
learning based on individual speed and preferences, textbooks
have traditionally been found to be static and consistently dull
for a variety of learners. Therefore, students sometimes avert
their eyes from reading a textbook because it is boring.

One of the solutions to this problem is to develop a digital
textbook which can make learning instractions adaptive and
dynamic on display. The system recognizes students’ cogni-
tive states by using several sensors including an eye tracker.
Then it changes the content and the layout dynamically so
as to improve a student’s motivation and understanding. For
instance, playing a video instead of showing a static picture
should attract their interests. Since students prefer different
representations depending on their skill levels [Mozaffari et al.
2016], the system displays the adapted representation based on
cognitive state analysis. By tracking the level of understanding
of the content, the system selects or generates exercises they
should solve so as to correct misunderstandings.



Figure 2. Eyetifact

We also provide the platform for researchers, teachers, text-
book publishers, and students as shown in Figure 3. Publishers
and teachers upload learning materials as blocks to our open
platform. Teachers and researchers build an intelligent text-
book by connecting blocks with triggers (i.e., determining
when/how a new block appears) on the basis of students’ cog-
nitive states. Students enjoy reading the intelligent textbook.
Their reading behaviors are recognized by eye tracking.

RESEARCH CONDUCTED AND PLANED AHEAD

Eyewear Computing
As pilot studies, we have investigated the potential of pervasive
eyewear computers. We proposed a method to detect eye blink
frequencies and head motions by using the sensors built on
Google Glass to recognize daily activities [Ishimaru et al.
2014b]. The method was evaluated on a data set containing
five activity classes (reading a book, watching a video, solving
mathematical tasks, sawing cardboard and talking) of eight
participants. The classification accuracy on user-dependent
training was 67% by utilizing features from eye blink only and
increased to 82% when extended with head motion patterns.

We have also proposed activity recognition method on JINS
MEME [Ishimaru et al. 2014]. JINS MEME are Electrooculog-
raphy (EOG) glasses that are equipped with three electrodes
to detect eye movements and a 6-axis internal measurement
unit (IMU) to detect head movements (see Figure 1). The
device is more inexpensive than Google Glass and has enough
long battery to cover daily activities. We have demonstrated
interactions using the glasses as well [Ishimaru et al. 2015].

There is a relationship between cognitive abilities (e.g., vocab-
ulary skills, critical thinking, academic scores) and reading
habits especially daily reading volumes [Stanovich and Cun-
ningham 1998]. As people can be motivated to be physically
fit by monitoring step counts [Michie et al. 2009], we believe
that tracking the number of words they read can help them
improve their daily reading volumes. Therefore we have im-
plemented the Wordometer 2.0: a system to quantify daily
reading volume by estimating the number of words a user
read from EOG signals measured on JINS MEME [Ishimaru
et al. 2016b]. The estimation algorithm was evaluated with a
dataset involving five participants read 38 documents (mini-
mum: 27 words; maximum: 120 words; average: 60 words in
one document). It estimated the number of read words with
11% error rate with user-independent training and 3.0% with
user-dependent training.

Figure 3. HyperMind

Reading Behavior Analysis on a Textbook
In order to develop the intelligent textbook, we started from
investigating reading behavior on a textbook [Ishimaru et al.
2016a]. In this study, we proposed methods to extract atten-
tions and to predict comprehensions by utilizing mobile eye
tracking glasses. As preprocessing, raw data from an eye track-
ing glasses are converted to gaze points on a document with a
projection function based on SIFT features [Lowe 1999] and
classified into fixations and saccades [Buscher et al. 2008].
In the attention extraction method, we define area of interest
(AOI) on the textbook beforehand based on the role of contents
(e.g., introduction, definition, application). Then the attention
was calculated as normalized sum values of fixation durations
in each AOI. In the comprehension prediction method, we
proposed two types of approaches: AOI based and features
in subsequence based. Both approaches utilize SVM to clas-
sify students into three classes (low, middle, high). For the
classification, attentions in AOIs calculated above are used
as feature in AOI based approach, and means and standard
deviations of fixation durations and saccade lengths in one
minute window, the size was selected experimentally, were
used in subsequence based approach.

For evaluations of the methods, we asked eight 11-12 years old
students to wear an eye tracking glasses, to read a textbook in
Physics and to solve respective exercises. Ground truth of their
comprehension was calculated from scores of the exercises.
Experimental results revealed that students’ reading behaviors
represent their comprehensions. For example, students with
high comprehensions tend to pay attention on the definition
part to understand the content. The classification accuracy of
the AOI based complehension prediction was 100% although
it is not suitable for the realtime application because it requires
the reading from the beginning to the end. Features from a
window of gaze data in one minute was enough able to classify
students’ completion into three classes with 70% accuracy.

Stress Sensing
Stress management is a key to keep be motivated in learn-
ing. In particular, external stresses including thermal heat
decrease a learner’s performance and productivity. Thus we
have proposed methods to estimate heat stresses in a working
environment [Hoffmann et al. 2016]. We succeeded to extract
face temperature by combining sensor signals of FLIR One
(see Figure 1) and a facial landmark tracking.

Mental illness, especially depression is one of the most press-
ing concerns all over the world. We also have demonstrated
the idea of “Thermometer for the Mind”: the mental state



estimating system by a user’s activity log derived from wear-
able devices [Ishimaru and Kise 2015]. In this study, we
investigated how information about physical activity from a
smartphone and social activity from a Web service can be used
to estimate a user’s mental state. We recorded one participant’s
step counts as one of the measurements of physical activities
and Twitter post counts as one of the measurements of social
activities with his self-assessment ground truth for 5 months.
The classification accuracy into three classes (the mood is low,
middle, or high) was 60%.

Future work
The implementation of Eyetifact is scheduled as the next step.
On the basis of the pilot studies, we are designing the method
to convert data from several devices. Since some of the de-
vices can be worn at the same time, we start from recording
two sensor’s data and treat data from the advanced sensor as
ground truth. Then the relation of two signals is trained by
LSTM [Hochreiter and Schmidhuber 1997].

In the context of HyperMind, we investigated “when” the dy-
namic changing should be appeared by measuring a student’s
comprehension. We plan to implement dynamic changing
on textbooks, and investigate three research questions. (1)
What kind of additional information (e.g., text, image, video)
can improve students’ learning abilities? (2) What is the best
way to display additional information (e.g., popup, using a
white space) overcoming the split attention effect? (3) How to
control showing/dismissing the additional learning materials?

CONTRIBUTION IN THE FIELD OF UBICOMP
Expected contributions of this research are to investigate sens-
ing approaches that recognize human abilities and to provide
the framework. Specifically, Eyetifact can accelerate work
around eyewear computing. HyperMind supports researchers
who want to apply sensing approach in the field of ubiquitous
computing to the educational field. In the long term, by us-
ing the recognitions as the base research, we would like to
demonstrate the work of transferring expert abilities to others.
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