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Abstract

This paper proposes Sneaking Detector, a system which
recognizes sneaking on a laptop screen by other people
and alerts the owner through several interventions. We uti-
lize a pre-trained deep learning network to estimate eye
gaze of sneakers captured by a front-facing camera. Since
most of the cameras equipped on laptop computers cannot
cover a wide enough range, a commercial wide-angle lens
attachment and an image processing are applied in our sys-
tem. On the dataset involving nine participants following
four experiments, it has been realized that our system can
estimate the horizontal eye gaze and recognizes whether a
sneaker is looking at a screen or not with 78% accuracy.
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Introduction

Sneaking — a process of watching something secretly — can
happen in several situations in daily life including in working
environments and public places. Another person behind an
owner can see what has been typed or displayed on mobile
devices or computers without the owner’s knowledge.
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Figure 2: Examples of images
taken by our proposed system
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Figure 1: Application flow chart which includes 3 main steps: image undistortion, gaze estimation, and sneaking detection

One of the most promising approaches to recognize sneak-
ing is to utilize eye tracking. Eye tracking technologies are
getting more and more pervasive. There are already lots of
eye tracking devices in the market today which tracks hu-
man eye gaze on a screen. But these devices are designed
for recognizing only one user’s eye gaze. (i.e., eye tracking
for multiple people is not supported, and the range for de-
tecting eyes is limited.) Additionally, these devices cannot
be attached to laptop computers all the time as it would not
be comfortable to carry mobiles with attached devices.

Recent inventions and improvements in the field of com-
puter vision help to avoid these drawbacks [2, 3, 4]. Also,
these work demonstrate that gaze estimation can be possi-
ble with only software and without any additional hardware.
Such results in the field of software-based eye tracking is
an encouragement in our work on sneaking detection.

The remaining problem is the range of eye tracking. In this
paper, we solve this problem by attaching a wide-range lens
to a camera (see Figure 1). Contributions of this work are
2-fold. (1) We propose Sneaking Detector, a system which
recognizes sneaking on a laptop and informs the incident to
the user. (2) We demonstrate the potentials and limitations
of gaze estimation on undistorted images.

Approach
Figure 1 shows an overview of the proposed system. The
following section describes each procedure.

Image Undistortion

A video frame taken through a wide-angle lens can detect
a person diagonally behind a user (see Figure 2). However,
due to an inbuilt feature of a wide-angle lens, we are not
able to use the distorted image for gaze estimation. We re-
move the distortion by inbuilt functions in OpenCV. As a first
step, we calculate camera matrix K and distortion coeffi-
cient D for a given laptop camera by taking pictures of a
checkerboard in different angles. This step is required once
for one combination of a laptop computer and a wide-angle
lens. For a given input video frame we calculate new cam-
era matrix using K and D, then computed the undistortion
and rectification maps for image transformation. Finally us-
ing remap function created a new frame without the fisheye
effect, which applies generic geometric transformation for
the frame. These steps have been repeated for every frame
to remove a fisheye effect from the video.

Gaze estimation

After evaluating several open eye tracking approaches [3,
1], we selected work by Krafka et. al. [2] to be integrated
into our system. A pre-trained network is available on their
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Figure 3: An experimental set up (Exp. 4). The participant is
sitting on the sneak’s position and looking at targets on the paper.

project’s web site’. As they detect a face in an image by
Apple’s face detection function?, we follow their procedure.
Additionally, we convert the pre-trained model into an ap-
propriate format of CoreML? to estimate gaze in real time.

Sneaking detection

In preliminary trials, we found that estimated gaze coordi-
nates have error towards the position of the camera even if
we do not attach a wide-range lens (e.g., eye gaze on the
left or right side of a camera are shifted to the center, and
all eye gaze on the screen is shifted to the top). This might
be because the original network was trained based on im-
ages taken by smartphones and mobile tablets. We apply
Linear Support Vector Regression to scale the gaze estima-
tion output from a sneaker. If the sneaker’s gaze is on the
screen, The system gives an alert to the user.

"http://gazecapture.csail.mit.edu/
2https://developer.apple.com/documentation/coreimage/cidetector
3https://developer.apple.com/documentation/corem|

Experiment  Task Position  Lens

1 9-point User No
2 9-point User Yes
3 9-point Sneaker Yes
4 5-point Sneaker Yes

Table 1: Conditions of each experiment

Evaluation
To evaluate our proposed system, we asked nine college
students to participate in the following four experiments.

Experimental Design

Figure 3 shows an overview of the setup. We prepared 13-
inch MacBook Pro, a software to guide eye gaze, a fish-eye
lens, and two chairs. One chair in front of the computer is
for a position of a user, and another is for a position of a
sneaker. As shown in Table 1, participants followed two
tasks on two positions, with and without a fish-eye lens.

In the 9-point task, 3x3 targets were displayed with equal
spaces on the screen (25%, 50%, and 75% of the width
and height of the screen). Each target was highlighted with
a sound every 1.5 second (one to nine, corresponding to
the position), and participants followed the highlights. In
the 5-point task, they looked at targets on A4 papers at-
tached to the screen. They followed the order with voice
announcements of the position mark. The order of the high-
lights was Top, Right, Bottom, Left, and Center. Each task
includes three intervals. Therefore we collected 96 sam-
ples from one participant. Models of Linear Support Vector
Regression were trained with a leave-one-participant-out
approach. Data from eight participants are used as training
samples to scale data of the remaining one participant.
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Figure 4: Gaze estimation results
(x-axis: ground truth, y-axis:
predictions). Data from each
participant are displayed as
different color, and linearly shifted
for the visualization purpose.
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Figure 5: A confusion matrix of our
sneaking detection involving nine

participants (Exp. 4).

We conducted the first experiment to calculate the baseline
of the gaze estimation. In the second experiment, we eval-
uate an effect of a wide-angle lens on the gaze estimation
of the user. Even if there is not any distortion in the center
of the image, estimating gaze on a small face should be

a challenging task. The third and fourth experiment is for
evaluating performances of gaze estimation of the sneaker.

Results and Discussion

Figure 4 represents the results of gaze estimations of the
first, second, and third experiment. Mean values of abso-
lute errors are 2.24cm (SD: 1.67), 2.56cm (SD: 2.04), and
4.09cm (SD: 2.69), respectively. Unfortunately, the system
was not able to estimate y-coordinate of eye gaze regard-
less of the condition of a wide-angle lens. We tested two
implementations (online estimation on CoreML and offline
estimation on Caffe), but estimation results were similar.

The accuracy of the five-class classification in the fourth
experiment is 47% (see Figure 5 for the confusion matrix).
As we investigated in the first experiment, gaze estimation
of y-coordinate seems not be reliable. If we simplify the
problem to three-class classification (Left, Center or Right),
the accuracy increases to 78%.

Conclusion and Future Work

We have proposed an approach of combining software-
based gaze estimation and a wide-range lens in order to
detect sneaking. Evaluations realized that gaze could be
enough estimated on images taken through a wide-range
lens and undistortion by image processing.

We classified a person sitting diagonally behind the user
is looking at the left side, the right side, or the screen with
78% accuracy. However, even if we did not attach the lens,
the system was not able to estimate the vertical eye gaze.

Future work includes investigation of other gaze estimation
method to be integrated. The intervention (how to notify the
sneaking to a user) is also in future work. Since displaying
an alert window is disturbing for a user, other approaches.
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